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Abstract. Within a fully relativistic framework, the thermodynamics of a classical dilute 
arbitrarily hot plasma in equilibrium is studied. The internal energy of the plasma is 
calculated to all orders in K T / m c 2 .  The case of a one-component plasma immersed in a 
static background is also studied. Up to order k T / m c 2  the results given previously by the 
authors are recovered. On the other hand we also give explicit expressions for the 
thermodynamic functions of a high-temperature electron-positron plasma. Some important 
questions concerning the coherence of our calculations and those of other authors are 
discussed. 

1. Introduction 

Hitherto, the statistical study of classical dilute relativistic plasmas (CDRP) has only 
been done for not too high temperatures. The reason is clearly that it has been widely 
believed for a long time that the Darwin approximation (which is only valid for not 
too high velocities) can not be improved upon without exact reference to the degrees 
of freedom of the electromagnetic field. The consequence of this has been that 
satisfactory classical relativistic statistical mechanics (CRSM) for such systems has not 
existed until recently. 

We now have a formulation of CRSM constructed by Lapiedra and Santos (1981) 
which, without any independent field degrees, goes beyond any low-velocity approxi- 
mation. The above authors used predictive relativistic mechanics ( PRM, Bel and Martin 
1975) in order to describe the microphysics of a system of N relativistic interacting 
particles. PRM postulates Newton-like equations of motion for the particles, in such 
a way that the degrees of freedom of the interaction fields are taken into account in 
the accelerations but do not appear explicitly. Hence a CRSM resembling the non- 
relativistic analogy has been built into the above reference by Lapiedra and Santos. 

However the accelerations appearing in PRM are not exactly known. In fact, for 
the electromagnetic interaction, they can be written as a series expansion in powers 
of the dimensionless parameter &h = e 2 / m h  (Lapiedra et al 1979), e, m being the typical 
charge and mass of the particles and h the mean impact parameter (we take the speed 
of light c = 1). Then in order to ensure fast convergence of these expansions we need 
relatively high impact parameters. In a plasma, h is of the same order as the mean 
distance between particles p-”’  ( p  being the density), and so the plasmas we deal 
with will be dilute enough. In fact for actual dilute plasmas only the first term in E~ 
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of these expansions is needed. Notice that since no expansions of the velocities are 
involved, the CRSM given by Lapiedra and Santos (1981) can be used to describe 
arbitrarily hot plasmas so long as they are dilute. Therefore we can study not only 
‘Darwin’ plasmas but any hot plasma where the creation-annihilation of pairs can be 
neglected. This could be the case of a dilute enough electron-positron plasma, which 
could be considered to be momentarily in equilibrium without taking into account the 
annihilation of pairs and the resulting photons. 

In this paper we are concerned with a two-component CDRP in equilibrium. This 
problem has been dealt with in the slightly relativistic domain by some authors, mainly 
Krizan and Havas (1962), Krizan (1974), Kosachev and Trubnikov (1969), Trubnikov 
and Kosachev (1968), Trubnikov (1968), Lapiedra and Santos (1983) and Barcons and 
Lapiedra (1983). Krizan and Havas started with the Darwin interaction which at first 
sight seems able to describe the thermodynamics of a plasma up to order k T / m  
(remember that the Darwin approximation is valid up to order U* and that in a plasma 
U* - k T / m ) .  Then these authors calculated the two-particle distribution function and 
the energy of the plasma by summing the ring diagrams. As pointed out in Barcons 
and Lapiedra (1983), the ring summation need not necessarily be correct in the 
relativistic case, because the presence of long-range correlations does not ensure its 
convergence. On the other hand, if one chooses the standard decoupling of the 
Bogoliubov-Born-Green-Kirkwood-Yvon ( B B G K Y )  hierarchy as the method for the 
determination of the two-particle distribution function within the Darwin approxima- 
tion, one is led to a non-screened correlation (see § 4). As a consequence the internal 
energy per particle in the plasma becomes divergent in the thermodynamic limit. 
Therefore one could think that the thermodynamical properties of a plasma up to 
order k T / m  cannot be obtained from the Darwin approximation. Our exact (i.e. valid 
for all temperatures) calculation in this paper, will clarify this point. We conclude 
(see § §  4 and 6) that in order to obtain the thermodynamic functions of a plasma u p  
to order k T / m ,  we must start with a microscopic interaction beyond the u2-approxima- 
tion. Therefore the results of Krizan and Havas are not correct. 

On the other hand, in the above papers, Trubnikov and Kosachev start their 
calculations with the Darwin Lagrangian, but when going to the corresponding Hamil- 
tonian they retain some terms beyond order U’. These terms are of the same order as 
others which come from the terms neglected in doing the approximation of the Darwin 
Lagrangian. In other words, their method would only be justified if the Darwin 
Lagrangian was an exact description of the classical electromagnetic particle interac- 
tion, which is obviously not the case. Hence their basic interaction and results are not 
correct. 

Finally, in Lapiedra and Santos ( 1983), from the standard decoupling of the exactly 
relativistic BBGKY hierarchy in a dilute plasma, a two-particle distribution function 
has been given. Then Barcons and Lapiedra (1983), by using this distribution function 
and retaining only terms up to order kT/  m, obtained a correction to the internal energy 
of the plasma. In the present paper we give an exact expression for the energy which 
reduces to that previously obtained by Barcons and Lapiedra up to order k T / m .  So 
we are led to the conclusion that these previous results are the correct ones (see § §  4 
and 6). 

The plan of the paper is as follows. In 0 2, we start with a brief review of the CRSM 
given in Lapiedra and Santos (1981) and then we calculate the internal energy of a 
two-component C D R P  valid for all temperatures. In § 3 we discuss the problem of the 



Statistical mechanics of classical dilute plasmas 273 

calculation of the equation of state, which is not analytically possible for all tem- 
peratures. 

In 9 4 we examine carefully the slightly relativistic limit where comparison with 
the above mentioned works is done. Section 5 is devoted to the study of the high- 
temperature limit and its application to electron-positron plasmas. In § 6 we discuss 
our results and  some important questions about the coherence of several approaches 
to the study of CDRP. 

The case of a one-component CDRP of electrons with a mechanically rigid positive 
background is dealt with in appendix 2. This is a typical case in which equilibrium 
is not present, but as we shall see, it can be treated as if the neutralising background 
was absent. 

2. The energy of a two-component plasma to all orders in k T / m  

Let us consider the 6N-dimensional space x,, U,, a = 1 , .  . . , N, x, being the three- 
position of particle a, and U, the spatial components of its four-velocity in a given 
frame (i.e., U, = -you, where n, is the velocity and  -ya = ( 1  - u: ) -”~) .  Let F‘”( t, x,, U , )  

be the distribution function in this space. As is well known in PRM (Fustero and  
Verdaguer 1981 see also Currie et a1 1963) the coordinates x,, U, cannot be canonical 
for the case of a relativistic interaction. As a consequence F”’( t, x,, U,) will not 
generally fulfil a Liouville equation, rather its conservation law will be a continuity 
equation. However it can be seen that in the case of a plasma, F ( N )  does fulfil a 
Liouville equation to lowest order in Eh (Lapiedra and Santos 1981). 

Furthermore to this order, the interactions in PRM are binary, since three-particle 
terms are at least of order E ;  (see Fustero and  Verdaguer 1981). So we are concerned 
with a problem which can be studied with techniques very similar to those used in 
non-relativistic statistical mechanics. For example, defining the S-particle reduced 
distribution functions by integration of F”’ over IIR=S+I d3xR d3uR one finds (Lapiedra 
and  Santos 1981) a hierarchy of equations (the relativistic BBGKY hierarchy). 

N 

Now, if the standard Bogoliubov ansatz is assumed 

Fi2’(a ,  6) = F i ” ( a ) F ” ’ ( 6 ) [ l  + G(a,  6 ) ]  

F‘3’( a, 6, c )  = F(”( a ) F “ ’ (  6)Fi1’( c ) [  1 + G ( a ,  6) + G( a, c )  + G( 6, c ) ]  
(1) 

the hierarchy is cut off. In fact, the approximation (1) corresponds (Barcons and  
Lapiedra 1983, Van Kampen 1968) to the first term in an  expansion of the distribution 
functions in powers of the dimensionless parameter &d = ~ ~ p ” ~ / k T  (i.e., three-body 
correlations will be of order E : ) .  So in a dilute plasma we have only two-particle 
correlations and  two-particle interactions. 

Now let us restrict, ourselves to the case of a homogeneous and isotropic plasma 
in equilibrium (no external fields are present). We assume also that the plasma is a 
two-component neutral one, with N / 2  particles with mass ml  and charge e, and N / 2  
particles with mass m2 and charge -e. Then for the one-particle distribution function 
we have 

F ‘ ” ( a )  = [ P ’ ~ , / ~ T V K , ( P ‘ ~ , ) I  e - P ” ~ ~ ~  (2) 
where V is the volume of the system, K 2  the second-order modified Bessel function 
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and p' is a parameter which coincides with 0 = I /  kT in the non-relativistic limit or 
in the free-gas case ( p  + 0 or T +  00). The reason for the introduction of p' is two-fold. 
On the one hand, the change of the canonical coordinates to x,, U, can alter P to yield 
another parameter p' as explained in Lapiedra and Santos (1981). On the other hand, 
the fact of having a velocity-dependent interaction can give rise to a similar effect 
(Kosachev and Trubnikov 1969). It will be shown in 0 3 that p ' / P  = 1 + O ( E ~ / ~ ) .  

By using the distribution function (2), Lapiedra and Santos (1983) have obtained 
the correlation function G(a, b )  from the standard decoupling of the BBGKY hierarchy. 
Its Fourier transform reads as 

and 

with KO and K2 the modified zeroth and second-order Bessel functions. Clearly GDH 
corresponds to the Debye-Huckel correlation function except for the change p + p' ,  
and G, is a relativistic correction. 

On the other hand, for the microscopic energy of two charges we have 

H(1,2)  = H'0'(1)+H'"2)+""(1, 2 ) + 0 ( & z , )  ( 6 )  

where 

H'O'(a) = may, 

and the Fourier transform of H"'( 1 , 2) is (see appendix 1 )  

1 1 
A'"(K, u I ,  U*) = ( 2 / ~ ) " ' -  1 - ( n .  0 1 )  2 +  1 - ( n .  ~ 2 ) ~  

(7 )  

Now, we want to calculate the internal energy of the plasma, i.e. 

E = 

In the above reference the present authors have given some plausible arguments to 

N 

F"'(t, XI, u I , .  . . , xN, uN)H(xI, u I ,  . . . , xN, U N )  n d3x, d3ua. (9) I a = l  
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show that up to order E:’~, this energy has only four terms: 

E =c H O ( a ) F ” ’ ( a )  d3x, d3u, . J  
+c  / [ H o ( a ) + H O ( b ) ] F ‘ l ) ( ~ ) F ( l ’ ( b ) G ( a ,  b )  d3x, d3u, d3Xb d3Ub ( lob)  

a,b ,. 

+ E 5 H“’(a, b)F‘l’(a)F“’(b)G(a,  b )  d3x, d3u, d3Xb d3Ub (10d) 
a, b 

where ( loa )  is an E :  term (except for the change P + P I ) ,  ( lob)  and (1Oc) are order 
&d and (10d) is order & 3 d / ’ ,  (For a detailed explanation see Barcons and Lapiedra 
(1983) where E, given by ( loa)-(  10d) has been calculated up to order k T / m .  Here 
we give the exact calculation in k T / m . )  

Now let us proceed with the calculation of these terms. The integral ( l oa )  is the 
energy of an ideal gas except for the change p + p’ .  Then the corresponding energy 
per particle is, in evident notation 

For a neutral plasma (as in our case), the second and third terms ( lob)  and (IOc) 
vanish. For a non-neutral plasma they would give a divergent contribution to the 
energy per particle. In other words, the thermodynamic limit does not exist for a 
non-neutral plasma. 

Now, the term (10d) because of the homogeneity of the plasma (i.e. H“’(a, b )  and 
G (  a, 6 )  only depend on x, and x b  through its difference x, - xb) can be written as 

Ed v d3u, d3ub d 3 K F “ ” a ) F ‘ ” ( b ) ~ ( K ,  ua, &)fi“’(K, U,, ob) (12) 
0.b I 

where we have used the fact that 8‘” and 6 are even functions of K. If we go to 
spherical coordinates in d3K, the integration over K can be easily performed and it 
is convergent. This is so, because of the natural renormalisation provided by the 
correlation function. Then the contribution due to the first term H(’)GDH can be 
evaluated without too many difficulties to give 

- 
EdDH/ N = -Jrre3pl/’~’‘/’  (13) 

which, except for the change /3 + P ’ ,  is the correction to the energy for a non-relativistic 
Coulomb plasma (cf Landau and Lifshitz 1967). The calculation of the remaining 
term (i.e. the integral containing fi‘l’6,) is very tediuos and must be done going to 
polar coordinates in the variables U,, u2, choosing n as the z axis. The result is 

where the notation should be evident. 
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Hence, the sum of equations (12), (13) and (14) gives the energy per particle in a 
CDRP for all temperatures. However this expression is purely formal as long as we d o  
not know what P ‘  is. This problem is discussed in the next section. 

In the case of a one-component plasma (with a static neutralising background) the 
results are essentially the same, as we shall see in appendix 2 .  

3. The virial theorem and the equation of state 

As we shall see in this section, the pressure, as well as the parameter P’  cannot be 
analytically evaluated for all temperatures. Sections 4 and 5 are devoted to the study 
of this problem in the ‘Darwin’ and ultrarelativistic limits. However for the sake of 
coherence of our theory we present here a method to evaluate the pressure and  P’  in 
the general case. 

It is obvious that P’  must become p when the density of the plasma vanishes. 
Therefore in a dilute plasma P ‘ / P  = 1 + O ( E ; )  where 7 is some positive number (we 
shall see that 7 =$). Hence if in the calculation of the energy only terms have 
been kept, to the same approximation we can substitute P ’ =  P in equations (13) and  
( 14). Then if we define C = P ’  - P, for the energy per particle we have in evident notation 

+ ( 1 -2) + ( 13) + ( 14) n 
where in (13) and (14) P ‘  can be substituted by /3 and where only linear terms in C 
have been retained. This is so because, as we said above, C will be seen to be of order 

Now, let us calculate the pressure. From the equation (Barcons and  Lapiedra 1983) 
3 1 2  

E d  . 

where 

( 1 8 0 )  

& ( P I  = a(P,  (18b) 
are two functions depending on  p m l  and pm2 but not on p (see equation (56)).  
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Now in order to know what P ‘  is, we use the Virial Theorem (Lapiedra and Barcons 
1983, cf Landau and  Lifshitz 1970), valid for systems with electromagnetic interaction 
without radiation 

N 

E - 3pV = ma((  1 - u : ) ” ~ ) .  
a = l  

Subtracting from (19) a similar equation for the ideal gas case, we can find a differential 
equation for C which reads: 

where 

are again only P-dependent functions. Then the differential equation (20) must be 
solved together with the boundary condition C ( p  = 0) = 0. Under this condition, it is 
not difficult to see that the solution is 

from which we conclude that, as we said before, C(p)-0(&3d2) for all temperatures. 
On the other hand, notice that for a purely Coulomb plasma, the term D ( P )  is identically 
zero, and  so the correction C ( p )  vanishes, i.e., P ’  coincides with /3 in this case. 

Therefore, we see that our calculation is consistent with the Coulomb limit, though 
it cannot be analytically carried out in the general case. If one were interested in a 
case not included in those considered in the next sections, numerical calculations 
should be performed. 

4. The Darwin plasma: thermodynamics up to order kTlm 

Let us consider in this section a plasma whose dimensionless parameter kT/ rn is small 
enough such that k (  kT /  m)’ terms can be neglected. Then for the internal energy of 
this plasma we obtain from equations ( 1  l ) ,  (13) and (14) the following result 

where M = ( m ,  + m2)/2 and p = mlm,/(  m, + m2) .  We have used the asymptotic 
expansions of the modified Bessel functions given in Abramowitz and  Stegun (1965). 
This result coincides with that previously given by the authors in the above reference. 
Therefore the approximations done in this reference in order to obtain the thermo- 
dynamic functions u p  to order k T / m  are actually correct. 
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Now, if we proceed as explained in the previous section, we can obtain the following 
results (Lapiedra and Barcons 1983) 

For the sake of completeness we also give the expressions found for the specific heat 
C ,  = ( l / N ) a E / a T ) ,  and the compressibility KT = - V - ' ( a V / d p ) p :  

Let us now return to the point raised in the introduction according to which these 
results cannot be derived from the Darwin approximation. As is well known, the 
Darwin interaction is valid up  to order v 2  and therefore it could be thought that it can 
describe the thermodynamics of a plasma up  to order k T / m .  In what follows we try 
to explain why this is not true. 

Let us describe the microscopic interaction in the plasma by the Darwin Lagrangian 
(cf Landau and  Lifshitz 1970) and use the BBGKY hierarchy with the standard decoup- 
ling for the distribution function given by equations (1). Then for the correlation 
function G( I ,  2 ) ,  one finds (Lapiedra and Santos 198 1)  the integer-differential equation 

+ (( 1-2) = 0 (28 )  

where tab are the space components of the four-acceleration, which the charge b 
produces on charge a, as derived from the Darwin Lagrangian. (See again the above 
reference for an  expression for tab.) Obviously, in equation (28 ) ,  to the approximation 
we deal with, yn can be taken as 1 +;U:. 

Fourier transformation of equation (28 )  reads: 

x { n *  u l + ( n *  ol)(n.UR)*-(n* VR)(Z)I  'UR)}- (1*2))  

= - ( 2 / . r r ) ' " ( P ' e I e , / K 2 ) [ n .  u , + ( n .  u l ) ( n .  u2I2 

- ( n  * U * ) ( U I  * U,) - (1-2)]. ( 2 9 )  
This inhomogeneous integral equation allows for the unshielded solution 

whose Fourier transform gives rise to the unphysical correlation function given in 
Lapiedra and Santos (1981).  It can be easily seen that this correlation function gives 
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no correction of order k T / m  to the energy of a Coulomb plasma. Furthermore, if 
using (30) one wants to go to higher orders in k T / m  one finds a divergent energy per 
particle when N + CO. 

Now, it is not difficult to see that the only solution of (29) which is quadratic in 
the velocities is (30). Therefore if one is searching for a dipole-dipole correlation 
function (Krizan 1974) one is led necessarily to (30). On the other hand, it seems to 
be natural that for k -+ CO the influence of the particles labelled R = 3 . . . N be negligible, 
and so for K large enough one must have G ( K ,  ul, u2) = -P’fiD(K, uI, u2) where 2, 
is the Fourier transform of the Darwin Hamiltonian. Then if one searches for a solution 
of (29) in powers of I l k 2 ,  being the first term in this expansion, one finds 
again equation (30). (Notice that this expansion corresponds formally to a series in 
powers of e2/K2.)  Let us remark that equation (30) can also be obtained by a 
coarse-graining technique (Goldstein 1969). 

Hence we arrive at the conclusion that at this level, the only solution to (29) which 
can be retained, is the correlation function (30). Actually, our exactly relativistic 
correlation function (3), (4), (5) reduces to (30) when u4 and ( k T / m ) ’  terms are 
neglected. However, when these terms are kept, we find a correction to the thermody- 
namic functions of order k T /  m. As a consequence, we can say that the thermodynamics 
of a Darwin plasma (i.e. a plasma where ( k T / m ) 2  terms cannot be neglected) cannot 
be worked out using the Darwin interaction, in the sense that higher-order terms in 
the velocities are needed in the basic microscopic interaction, to get a correction of 
order k T / m .  A more detailed discussion of this important result is carried out in § 6. 

5. The ultrarelativistic limit: electron-positron plasma 

Let us consider a plasma for which we have pm << 1.  At these temperatures the creation 
of electron-positron pairs occurred and we can consider that our plasma is mainly 
composed of electrons and positrons in the same proportion. So in order to study the 
thermodynamics of such a plasma, we can use the expressions given in § §  2 and 3 for 
m I  = m2 = m and mp << I .  If  we take into account the expansions given in Abramowitz 
and Stegun (1965) for the modified Bessel functions in the limit of small argument, 
we have 

E /  N -- ( 3 / P ) (  1 - C / P )  - ( 2 ~ ) ” ~ e ~ p ~ ’ ~ P ~ ’ ~  log3’’(2/pm) (31) 

where only dominant terms in the kinetic, as well as in the interaction energy have 
been kept. We see from (3 1) that in the ultrarelativistic limit pm << I the Debye-Hiickel 
interaction term (13) does not play any role. 

On the other hand, to the same order, performing the standard calculations 
explained in § 3, we arrive at the following results 

P ’ =  P (32) ( ( 2 ~ ) ” ~  e3p1I2  
p pkT 1 -- - - 

3 (kT)3 ’2  m (33) 

On the other hand, for the specific heat and the isothermal compressibility we have 

m 
(277)’” e3p1I2 

C v  3 K 1 +- ~ log3l2 - ( 6 (kT)”’ (34) 
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From equations ( 3 1 ) - ( 3 5 )  we see that in limit T + m ,  we recover, as expected, the 
thermodynamics of a classical ultrarelativistic ideal gas (i.e., E /  N = 3kT, Cv = 3k, 
P = pkT, K;' = p k T ) .  This shows that also in the high-temperature limit our calcula- 
tions lead to consistent results. 

Notice that the study of the ultrarelativistic limit, given in this section, has been 
possible because in our framework no expansions in the velocities are involved. 

6. Conclusions 

We have studied in this paper some features of the thermodynamics of a classical 
arbitrarily hot plasma in equilibrium in an  exactly relativistic framework. In connection 
with this, there is the point of the covariance of our results, which has not been studied 
here. The question is the following: as our starting point is exactly Lorentz covariant, 
how d o  our results change under a Lorentz transformation? The answer was given by 
Van Kampen (1969), who showed that distribution functions in phase-space are Lorentz 
invariant. Actually, in this paper, we worked out our calculations in a concrete 
advantageous frame of reference in which the plasma is in equilibrium, homogeneous 
and  isotropic. If one were interested in looking at the plasma from another frame of 
reference, Van Kampen's results would have to be taken into account. For example 
it can be seen that the energy of a plasma behaves like the temporal component of a 
four-vector whose components corresponding to the three-momentum are zero in our 
frame. Then the extension of our results is straightforward. Nevertheless, in this paper, 
we are not concerned with this problem. 

Now let us come back to the problem of the Darwin plasma studied in 0 4. As we 
said there, it is not the same to approximate the microscopic model and then to work 
out the thermodynamics, than to work out first the thermodynamics and then to 
approximate the final results. Clearly when, as in this case, the two ways d o  not 
coincide, it seems to be more reasonable to follow the second way. Now, in Barcons 
and Lapiedra (1983) the following heuristic point of view has been advanced: when 
statistical calculations must be performed and one must start with a given approximated 
microscopic interaction up to a certain order, one must proceed systematically to 
perform the statistic without neglecting or introducing terms of the same order than 
those considered in the microscopic interaction. The hope is then that, in this way, 
one will obtain the approximated thermodynamics of the system up  to a given order, 
which corresponds to the order kept in the starting microscopic interaction, i.e., it is 
assumed that higher-order terms neglected in the microscopic interaction, if they were 
kept, would give rise to higher orders in the macroscopic description. Nevertheless, 
this heuristic point of view is not correct for a Darwin plasma, since, according to 
which has been explained in § 4, in this case, beside U* terms, v 4  terms need also to 
be considered at least in the basic interaction in order to get a correction of order 
k T / m  in the thermodynamic functions. Which is then the real situation? As we said 
in 0 4, when starting from the Darwin interaction, one is led to an  unphysical, infrared 
divergent correlation function, which gives an  infinite energy per particle, i.e., the 
thermodynamic limit does not exist in this case. Thus, for equilibrium systems driven 
by long-range interactions, it can happen that, starting from the approximated micro- 
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scopic interaction to a given order and doing the appropriate stat:ctical calculations 
one does not find the expected thermodynamic limit. Then P probably consider 
higher-order terms in the microscopic description in order to ensure the existence of 
this limit. This is just what we have done for a slightly relativistic plasma in the above 
reference. 

Dealing with this problem, Trubnikov and Kosachev have kept all terms in v which 
come from the Darwin Lagrangian when one tries to obtain the velocities as functions 
of the positions and generalised momenta. In this way, they forget all terms which 
come from the corrections to the Darwin Lagrangian itself. These terms are of the 
same order as those which have been retained by then. Thus their approximation is 
not consistent. 

Finally, let us remark that the good behaviour of our results in the low- and 
high-temperature limits, convinces us that the method developed here and  in the papers 
referred to by Barcons, Lapiedra and  Santos is the correct one to deal with CDRP in 
equilibrium. 
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Appendix 1 

In this appendix we derive equation (8) in the framework of PRM. The expression for 
H‘” (xiz, u I ,  U > )  has been derived in Bel and  Martin (1975) but it is too complicated 
for our purposes. Therefore, we will obtain the Fourier transform of H‘”(xl2,  uIr u2) 
without using the explicit expression of H‘”. 

Consider in the PRM formalism the following system of differential equations 
governing the evolution of two interacting particles a = 1 ,2  

dx,/dt = U,, du,/dt = aa(xh, v C ) .  (Ai.1) 

PoincarC invariance of this manifestly predictive system is ensured only if the acceler- 
ations a, satisfy the Currie-Hill conditions (Currie 1966, Hill 1967). On the other 
hand the condition which ensures translational invariance reads: 

(A1.2) 

which says that a, can only depend on x,, x2 through xi> = x, - x2. 
Now the Lie algebra associated with the PoincarC group, can be represented as a 

set of ten generating functions H, P, J,  K,  which have the usual meaning of total 
energy, total momentum, total angular momentum and centre of mass position. Con- 
cretely it can be seen that H fulfils the following equation (Fustero and Verdaguer 1981) 

(A1.3) 
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(summation over b is understood), where 
2 

H'O'= 1 maya 
a = l  

(AI .4) 

and R ( A )  is an operator acting as follows 

R ( A ) f ( x a ,  ub  = f ( X a  -k ua ,  ub ). (A1.5) 

It can be seen in PRM formalism that from the PoincarC invariance we have 

(A1.6) 

i.e., H depends only on xI ,  x2 through xI2. 

perturbative expansion for the accelerations in powers of &h makes sense 
Now let us assume that the two particles interact via electromagnetism and that a 

n =  I 

where a:'"' is of order E : .  This leads us to a similar expansion for H: 

We are now interested in the evaluation of H'". From (A1.3) we have 

(A1.7) 

(A1.8) 

(A1.9) 

(A1.lO) 

( ~ - Y , . V , , ) K ' + ( K .  ua-K. ~ , , ) v b , + [ ( K *  u a , ) ( u a .  u , ' ) - K *  U,] 
X 

K 2 - ( K .  
( A l . l l )  

Now taking Fourier transforms in equation (A9) we find 

from which equation (8) can be easily derived. 
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Appendix 2 

In this appendix we shall study the thermodynamics of a plasma with N electrons at 
an arbitrarily relativistic temperature T and N positive neutralising ions at rest (usually 
protons). This case has been extensively dealt with in the literature (Krizan and Havas 
1962, Krizan 1974, Trubnikov and Kosachev 1968) but its correctjustification has not been 
done to our knowledge, at least in the relativistic case. 

First let us consider distribution functions involving protons. In an obvious notation 
we have 

Fb”((a)=(1/V)S‘3’(Ua) (A2.1) 

because protons are always at rest. On the other hand it is not difficult to see that the 
joint distribution functions Fr;( a, b) and FE)(  a, b) fulfil 

b )  = Fr’(a)F:’(b) (A2.2) 

Fbz,‘(a, b) = F:’(a)FLl’(b). (A2.3) 

Equation (A2.2) is evident because the protons do not have any motion. In order to 
justify equation (A2.3) consider the identity 

(A2.4) 

where Wpe( a /  b) is the conditional probability density that the ion be at x,, U, in phase 
space when the electron is at xb, ub. Clearly as the ion is always at the same place, 
W,,(a/b) does not depend on the position and velocity of the electron, and so 
Wpe(a/b) = F:’(a). 

Now let us consider the expression of the total energy of the plasma written in the 
following way 

F:’( a, b) = Wpe( a /  b)F:”( b) 

+ 1 d6a d6bH‘l’(a, b)F‘”(a, b )  
a, b 

(A2.5) 

where the sums must be extended, in principle, to electrons and ions. However we 
shall see that except for a constant we can restrict these sums only for electrons. 

First the term (A2.5) gives 

(A2.7) 

where mp is the mass of one of the ions and m the electron mass. 

Let us put Z-$’)( a, b) = H,( a, b) + HR( a, b ) ,  where Hc is the purely Coulombic part 
and HR is the relativistic part which goes to zero when one of the two velocities 
involved U,, U b  vanishes. Therefore (A2.6) becomes 

r 
(A2.6) = d6a d6b Hc(a, b)F‘”(a, b) 

0 J (A2.8) 

+ d6a d6b HR(a, i,)Fa:’(a, b). 
a, b 

electrons 

(A2.9) 
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We split again term (A2.8) into four parts, according to (A2.2) and (A2.3) 

(A2.8)= 1 d6a d6b Hc(a, b)F~”(a)FL”(b)G,,(a,  b) 
a, b 

electrons 

+ c I d6a d6bHc(a,  b)F6”(a)FL1’(b) 

+ 1 I d6a d6bHc(a,  b)Fb”(a)F:’(b) 

+ 1 I d6a d6bHc(a,  b)F:l’(a)Ff’(b). 

a, b 
electrons 

protons 

a electrons 
b protons 

(A2.10) 

It is not difficult to see that because of the neutrality of the plasma, the sum of the 
three last terms of equations (A2.10) vanishes. On the other hand it can be also seen that 

d6a d6bHR(a ,  b)FL”(a)F6l’(b) = O  I (A2.11) 

in which case 
r 

(A2.6) = C J d6a d6bH(l ) (a ,  b)Fb”(a)F6”(b)G,,(a, b). (A2.12) 
a, b 

electrons 

Finally, in order to see what Gee( a, b )  is, one can remember that Gcp( U, b )  = Gpp( a, b )  = 
0 in which case Gee(a, b) can be calculated as if protons were absent. Therefore the 
energy per electron can be calculated to give 
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